alpine ed

Snow Climbing

Know the Ropes: Fundamentals to Save Your Life

Originally Published in the 2014 Edition of Accidents in North American Climbing

Author: Dunham Gooding & Jason D. Martin // Photos: Erik Rieger.

“Slip on Snow.” The phrase seems innocuous enough. It certainly doesn’t sound like something that might lead to an injury or a fatality. But the reality of those three words in Accidents is quite different. If a slip or fall on snow appears in the heading of an abstract, it usually means that something terrible has happened. It might mean that someone has died.

cause of snow travel accidents

In the last 10 years more than 300 snow travel accidents have been recorded in Accidents in North American Mountaineering. Many, but not all, of these accidents were precipitated by deficient equipment or skills, including “Improper Crampon Use” or “Failure to Self Arrest”; others by illness, exhaustion, or injury; and yet others were the result of objective hazards like avalanches, rockfall, or icefall. Many, but not all, of these accidents could have been avoided had the climbers developed a better understanding of the skills required to move over snow—a dynamic and dangerous setting.

Effective snow travel is a baseline skill that is often overlooked by beginners and advanced climbers alike. In many cases, climbing clubs and even some professional guide services do not spend adequate time teaching effective movement and fall avoidance on snow. This leaves all of these climbers—beginner to advanced—open to the possibility of making mistakes that result in injury to themselves or others.

In the following pages, we will discuss the baseline skills that every mountain traveler must master in order to move efficiently over snow, maximize safety, and minimize risk. For both ascending and descending snow slopes, there are two main techniques that we will address: using your feet and using your ice axe. Effective snow travel requires synchronization of both techniques, matching those techniques to the proper terrain, and ensuring the equipment matches as well. Finally, we’ll briefly discuss strategies for choosing the route, time of ascent, and when to belay or unrope on snow.


USING YOUR FEET

Good footwork is the first line of security against slips on snow. And good footwork requires mountaineering boots, with rigid or semi-rigid soles and ample lugs for traction. (Inadequate footwear is frequently a contributing factor in snow-travel incidents reported in Accidents.) In soft snow, without crampons, there are three recommended techniques. All three can be adapted for use with crampons when snow conditions require it.

Duck Walk

Lower-angle, soft to mildly hard spring and summer snow often allows one to travel effectively without crampons. In this terrain—often up to 35 degrees—the most effective technique is the “duck walk.”

Splay your toes out so that your feet make a V in the snow. As you move up the slope, feet splayed, kick the surface of the snow, using the inside edge of your boot to cut a platform. Move your weight onto the platform as soon as you have cut it, and then repeat the process with your other foot. If your little platform gives way under your weight, kick again and create subsequent steps with a more vigorous swing of your foot to cut deeper into the slope.

step kicking; snow travel; mountaineering; how to climb snowy mountains

Step Kicking

As the angle increases, you will find it more comfortable to kick steps straight into the slope. Step kicking straight up the fall line is more strenuous than moving on a diagonal, but it is an effective way to increase your security. If the snow is consolidated but soft enough to kick good steps, you will have a good platform on which to stand. You will also be facing the slope, which is an excellent position from which to perform a quick self-arrest in the event of a slip.

Diagonal Ascent

If the snow is not soft enough to kick good steps, but is too steep for the duck walk, you may wish to make a diagonal ascent, switchbacking up the slope. The standard technique for moving up a steep slope at a diagonal is to employ a crossover step.

When moving up at a diagonal, there will always be a downhill foot (on the side of your body away from the slope) and an uphill foot (on the side closest to the slope). To move up the slope, cross your downhill foot above your uphill foot and then step up. Now bring the other foot around from behind to return to the uphill position. Once you’ve completed this crossover step, you should be in the same position from which you started. You’ll note that when you’re in the awkward crossed position you’re “out of balance.” When you’re in your original position, you’re “in balance.” If you’re using an ice axe to increase stability, it should be on the uphill side of your body and you should only move it when you’re in balance. Only stop to rest when in balance.

If you have trouble keeping track of which position is in balance and which is not, remember that the position that tends to make you face the slope is out of balance, and the one that tends to face you out slightly from the slope is in balance.

In order to change the direction of your ascent, bring your downhill foot up into an out-of-balance step, and then match that foot in a V position with your other foot, creating a duck stance. From there, make an in-balance step and kick a stance with the new uphill foot, pointing in the new direction. Note that the duck stance is always in balance, so it is possible to switch the ice axe from one hand to the other at any time while securely in that stance.

In harder snow you will have to shear each stance by cutting into the slope with a brisk forward swing of your foot, using a combination of the edge and the sole of your boot. In good conditions you should be able to cut your foot into the slope using a single movement. On hard snow you may need to kick several times to cut an appropriate stance.

Effective Crampon Use

In the past, a number of climbing clubs taught that crampon use was “required” for glacier travel. Thankfully this practice is far less common today, but there are still a lot of climbers out there who believe this to be true.

The reality is you should only wear crampons when the conditions require it. Crampons are dangerous. You can stab yourself with them or catch a point on a piece of clothing and trip. Crampons are required only when you walk or climb on firm snow or ice. It doesn’t matter whether you are on a glacier or not. If wearing crampons doesn’t increase your security, you should stow them until the conditions change.

It is common to start a climb early in the morning when snow slopes are thoroughly frozen. In a temperate climate, as the day unfolds, rising temperatures and direct sunlight on the snow can rapidly change frozen snow to soft snow or mush. Recognize when crampons are no longer needed and take them off.

When wet snow begins to ball up on the bottom of a crampon, the possibility of slipping and falling becomes very real. If the snow is soft enough, consider removing your crampons. In some cases a thin layer of wet snow on top of ice or hard snow makes crampons essential. For this reason mountaineers should always employ crampons equipped with anti-bot plates. These plastic inserts help keep snow from balling up between the crampon spikes.

The crampons you choose should be compatible with your boot and should be appropriate for the objective. If you elect to wear crampons with a toe bail or a heel bail/clipper, confirm that the rand/welts on the boot are appropriate for these crampons before you leave for the mountains. Try pulling down on the center bar and pulling the front points side to side. Does the crampon shift or lose contact with the boot, even if the sole is flexed? If the crampons do not fit securely, they must be adjusted or a different crampon/boot combination should be chosen. Never ignore a badly fitting crampon or just hope that it will improve.

Tripping is a significant hazard with crampons, often a result of the frontpoints snagging on clothing or gear. It’s not uncommon to see climbers wearing gaiters on the wrong feet, with the buckles on the inside of the legs—this provides a prominent place for a frontpoint to catch, causing a stumble. Be sure extra crampon straps are tucked away and that—if not wearing gaiters—the cuff of your pants has a low profile. (Many modern mountaineering pants have grommets to attach elastic cords that run under the boots, eliminating the need for bulky gaiters.)

Once you put on your crampons, you should continually focus on good technique, using thoughtful and controlled steps. Running down a slope, climbing while tired, or stepping out of balance are all good ways to either trip or stab yourself with a crampon point.

French Technique (Flat Foot)

French technique is the art of flexing the ankle so provide purchase for all of the crampon points on the bottom of your boot. Most modern crampons have 10 points on the bottom and two frontpoints on each toe. An individual employing proper French technique will engage all 10 of the bottom points to create a high level of security in the step. This is also referred to as the flat-foot technique or, in French, pieds à plat.

In hard snow or icy conditions the flat-foot technique may be used in combination with both the duck walk and a diagonal ascent. The techniques are the same as described without crampons, with one significant difference: You must flex your ankles sideways so that all of the crampon points bite into the surface.

American Technique (Hybrid or Pied Troisième)

demonstrating American technique of walking with crampons; how to use crampons; mountaineering

As the slope angle increases (usually above 45°) it becomes difficult to maintain diagonal French technique without shifting the toe of your boots so radically downhill—in order to engage all of the crampons’ bottom teeth—that you end up walking up the slope backward. Moving this way is physically demanding and isn’t terribly secure.

Instead, shift one foot out of the French stance and engage the frontpoints in the snow. The other foot should remain flat-footed against the slope. This technique allows you to face the slope and move quickly, while saving the strength in your calves. As the calf in the frontpoint position tires, simply switch feet and allow the pumped calf to rest in a flat-footed French position while the rested foot and leg take over the frontpointing.

Austrian Technique (Frontpointing)

The third crampon method is the Austrian technique, or frontpointing. This technique is reserved for very steep angles—usually in excess of 70°—though some climbers prefer it on somewhat lower-angled terrain.

Frontpointing requires one to kick their crampons straight into the slope, and then to drop the heels approximately 10° below a level stance. Dropping the heels engages not only the frontpoints but the next two points on the crampon as well. The result is that a climber stands on four points, instead of just two, which increases the stability of the placements.

Frontpoint crampon technique tires the calf muscles, and because fatigue is a significant contributor to slips and falls on snow and ice, climbers should use the American technique rather than frontpointing whenever it’s reasonable.


USING AN ICE AXE

Many mountaineers tend to see the ice axe primarily as a tool for self-arrest. But an ice axe should be used primarily to increase security while climbing, in order to decrease the likelihood of a fall. Being able to execute a good self-arrest is important, but the first goal is always not to fall.

Ice Axe Choice

For mountaineering routes, a straight-shafted axe with a gently curved pick and no molded plastic grips or handles, roughly 60 to 70cm long (depending on the climber’s height), will provide the most versatility and security for snow travel, self-arrest techniques, and creating snow anchors.

However, many climbers opt for shorter technical tools for alpine routes and ice climbs, even those that may require serious snow travel en route or during the approach or descent. Some technical tools work better than others in such applications. Consider tools with lower-profile finger guards and grips, a generous spike, and a less radical curve to the shaft.

Leashes

In most mountaineering settings, there is no compelling reason to leash an ice axe to your wrist. The tool is always to be carried in the uphill hand, and using a leash requires the climber to switch the leash to the other hand every time he changes direction on a diagonal ascent. This takes time, decreases security, and takes focus off the task at hand. In most settings, the danger of dropping an ice axe is lower than the risk of destabilization during a transition.

However, using a leash makes sense in contexts where the likelihood of a drop increases. For example, when wearing mittens in extremely cold weather or on high-altitude climbs, a leash is imperative because of the lack of dexterity. (In some cases, it may be preferable to tether the axe directly to your harness, because switching a leash with bulky mittens and clothing can be nearly impossible.) When climbing steep ice, wearing some kind of leash or tether makes sense, because dropping an axe in such a setting could be catastrophic.

How To Hold the Axe: Cane Position vs. Self-Arrest Position

While climbing moderately steep snow, mountaineers have two primary choices of ice axe positions: carrying the axe in the cane position, with the pick forward, or carrying the axe in the self-arrest position, with the pick backward. It is not uncommon to hear climbers argue about which is better. But it’s clear which way is better: The cane position is better when you are actively climbing the mountain, and the self-arrest position is better when you are actively falling off the mountain.

how to use an ice axe; how to use a piolet

All joking aside, the cane position (piolet canne) provides more stability and should be used in most cases while ascending, for two major reasons. First, it’s easier to firmly set the axe’s spike in the snow when you have the palm of your hand seated comfortably on the flat surface of the adze. Placing the spike effectively in hard snow with the axe in the self-arrest position will eventually bruise the palm of your hand on the narrow edge of the pick, causing you to be less aggressive with the axe. Second, as the angle of the slope increases, it is more natural to transition from the cane position into one of the dagger positions with the axe.

Obviously, one will be slightly slower to move into a self-arrest with an ice axe in the cane position. Some would argue that this compromises one’s safety. But the best way to address that compromise is to practice self-arrest from the cane position until it is second nature and can be employed as effectively as from the self-arrest position. Switch to the self-arrest position only when there is an obvious danger—like crossing a heavily crevassed area on a rope team or traversing a very steep slope—when the climber must be prepared to self-arrest.

Self-Belay Position (Piolet Manche)

The self-belay or “deep plunge” position is a secure technique for steep snow climbing. The axe is pushed down vertically into the snow as deeply as possible, while you continue to hold the head of the tool. The head of the axe becomes a handhold. (In French, manche means “handle” or “sleeve.” Imagine the shaft of the axe down in a sleeve of snow that will keep it in place, creating a good handle.)

There are two ways to hold the axe while employing this technique. In softer snow, when the majority of the shaft is buried, you can hold the head of the axe with both hands. This is very secure.

If the snow is too hard or icy for the axe to penetrate very far, it isn’t effective to have both hands on the head because in a slip you may simply lever the spike out. Instead, one hand can be placed on the head of the axe while the other grips the shaft at the point where it disappears into the snow. In the event of a slip, the hand on top of the axe should push forward, while counter pressure is applied to the hand that is lower on the shaft. In other words, you should be pushing in on the top and pulling out with the hand just above the spike. If pressures are applied correctly, the slip will be arrested by this technique before it becomes a fall.

Anchor Position (Piolet Ancre)

Occasionally a climber will need to make a quick placement with the pick of his axe in order to pull over a bulge or assist with a crevasse crossing. To do this, hold the axe in your dominant hand just above the spike and swing it over your head like you’re pounding in a nail. Right at the end of the swing, flick your wrist forward; this will allow the pick to bite more deeply. Once the pick is placed, you can use both the shaft and the head of the axe as handholds while you climb up over your obstacle.

Low, Middle and High Dagger Positions

On steep snow and ice, most commonly on terrain between 45° and 70°, one or more of the dagger positions may be useful. The climber holds the ice axe at the top of the shaft or on the head while seating the pick of the axe in the snow. Dagger positions work well in hard snow or on névé, but are less effective on hard ice, where the only way to create an effective pick placement is to swing the axe.

The first of these three techniques is the low dagger position, or piolet panne. In this position, place the palm of your hand on the top of the adze as you press the pick into the slope at waist level. This is a quick technique that doesn’t require any changes to the way you hold your ice axe, assuming you started out in the cane position, but it doesn’t feel as secure as some other techniques because the pick is so low. It will be most useful for downclimbing.

In the middle dagger position (piolet appui), place your hand on the shaft of the axe right below the head. This position allows you to push the pick into the slope more forcefully, making each stick feel more secure.

In the high dagger position (piolet poignard), hold the head of the axe, wrapping your fingers over the pick in front of the shaft while you wrap your thumb under the adze behind the shaft. To place the axe, reach high and stab the pick into the slope. A high dagger placement often provides better security on very steep slopes than the other two dagger positions.

Self-Arrest

Failure to self-arrest is a common contributor to the incidents found in these pages, and many climbers are almost obsessively fixated on their ice axe as a tool to arrest a fall. But many times a slope is too steep or the snow too hard or icy for an effective self-arrest. Think of an icy slope of 40° or more and you’ll get the picture: The falling climber starts sliding too quickly to control a slide.

arresting a fall on snow; how to arrest a fall on snow

When a fall takes place, a mistake has already been made. Therefore, as we’ve said before, although it is important to practice self-arrest it is perhaps more important to practice the art of not falling. Work on proper foot technique, practice using the ice axe as an aid to decrease the likelihood of a fall, and develop situational awareness by paying attention to your surroundings and managing risk on exposed terrain.

Your risk management strategy should take into account both the condition of the snow and the angle of the slope. In soft snow conditions, even on 40° terrain, a self-arrest may be effective. But in icy conditions, even on a lower-angled slope, a self-arrest may well be unsuccessful. If it doesn’t appear that a self-arrest will be feasible, you may have to alter your climbing strategy, including roping up and belaying or choosing an alternate line.

Depending on the circumstances, you may end up sliding down the slope after a slip in any number of different ways: feet-first on your back, head-first on your stomach, etc. It doesn’t matter how you fall, the goal is the same: Roll into a self-arrest position with the shaft of the axe across your body, place the pick in the snow, look away from the adze, then torque the spike up while lifting with your legs. This should bury the pick deep in the slope’s surface and bring you to a stop. It’s beyond the scope of this article to explain self-arrest in depth: Seek instruction and practice repeatedly. Find a low-consequence slope and take a variety of mock slips and falls in varying positions to get the hang of it. Building good instincts takes repetition.

Most climbers practice self-arrest with a standard alpine piolet. These ice axes were designed with self-arrest in mind and work well for it. Shorter, technical ice tools are not as easy to manipulate into the self-arrest position, and the picks may skitter off hard snow or ice. Those who climb with technical tools should practice self-arrest with such tools until it is second nature.

One great debate over the practice of self-arrest is whether the climber should kick his feet up during an arrest, in order to ensure he doesn’t get flipped over by his crampons, or whether he should bury his toes into the snow no matter the cost. Many climbing clubs still teach the former technique, whereas most guides now teach the latter.

In the event of a fall, the most important thing is to stop. Style points don’t matter. Indeed, even injury doesn’t matter. What matters is that you fight with everything that you have in order to arrest a fall.


DESCENDING ON SNOW

Many snow-climbing accidents occur while descending. Often this is because the climber is tired and not paying attention to the surroundings and the conditions under foot. It is important to stay alert on the way down, and to focus both on the slope below you as well as on your feet.

Plunge Step

descending a snow field; mountaineering

The plunge step is an aggressive and direct way to descend a slope of soft snow. Think of it as reversed step kicking. To do it effectively, bend your knees slightly, spread your feet shoulder width apart, and step straight downhill, striking the slope with the heel of your boot. The heel will cut into the snow and create a platform for the rest of the boot.

In harder snow conditions, it is imperative that the heel aggressively hits the slope on every step and that the toe is pointed slightly upward. Try to plunge down and kick back to achieve the proper step. Often people who are not aggressive plunge-steppers may slip and then become more timid in their steps, which leads to more falls and more timidity. If you fall once, don’t back off—be more aggressive in your steps to ensure that your heel cuts deeply enough to create a secure step.

Most climbers will feel comfortable with the plunge step in soft conditions on slopes up to about 40°. In semi-hard conditions, aggressive plunge-stepping should be reserved for slopes that are 35° or under. If the conditions are too hard to plunge-step securely, descending with crampons is a better option.

Shuffle Step

If the terrain is steeper or more exposed, climbers may resort to the shuffle step to increase the security of their descent. This technique is not fast, but is very secure and can be done with crampons on or off, depending on the conditions.

Face perpendicular to the slope and step down with your downhill foot. Now move your uphill foot down into the step your downhill foot occupied a moment earlier. Your ice axe should be in your uphill hand in the cane or self-arrest position, with the spike planted firmly in the snow. Once your feet are next to one another, move the ice axe down, planting the spike once more.

Downclimb

Downclimbing steep slopes on frontpoints or with American (pied troisième) technique is often faster than setting up a rappel. Indeed, in conditions where it’s hard to build a good rappel anchor, downclimbing may even be safer.

Some climbers might feel comfortable downclimbing 60° snow, while others wouldn’t dream of it. If one member of a team is uncomfortable downclimbing a given slope, it may be better to belay him and then solo down. Alternately, you might consider setting up a rappel for the entire team.

Descending with Crampons

The biggest thing to remember when descending with crampons is that it is easy to trip over a gaiter, shoelace, or pant leg while walking or plunge-stepping downhill. For this reason, it is important to splay the toes of your crampons out a little bit on the descent and keep your two feet away from each other. Also, beware of snow balling up under the crampons. From an in-balance position, knock snow off the crampons by banging the sides of them with your ice axe or by kicking one crampon against the side of the other.

Glissading

Many mountaineers ascending lower-angled mountains look forward to the adventure of glissading down snow slopes after their climb. There are three types of glissade that a climber can employ: standing glissade, three-point glissade, and sitting glissade. But losing control of a glissade is a contributing factor to many accidents. Following four guidelines can help minimize the risk.

Never glissade with crampons on. People get injured every year because they wear crampons while glissading. If you’re wearing crampons, it’s probably icy, and if it’s icy you probably shouldn’t be glissading. Second, and perhaps more importantly, if you’re wearing crampons while glissading quickly, you could easily snag a spike on hard snow or ice, with the possibility of breaking an ankle or leg.

Never glissade while tied into a rope team. If you are roped up, it should be because there are hazards that require a measured and controlled approach. Sliding down the hill is the antithesis of measure and control.

Never glissade on a glacier. If you are on a “wet” glacier, then it is likely that you are roped up to manage the crevasse hazard. The preceding rule states that glissading while roped up is never advised. If you’re not roped up, glissading on a glacier opens the possibility of a crevasse fall, which almost always has severe consequences.

Always make sure you can see where you’re going. You should not glissade if there is any fog or rollovers to negotiate. Glissading off a cliff, into a moat, or onto talus is a terrible way to end your day.

SNOW CLIMBING STRATEGIES

snow climbing strategies; mountaineering

There are many snow-climbing situations where climbers may choose to move together while roped to one another. The most common is to protect against a crevasse fall. But this technique also may be used to protect a team from a fall down snow or ice through the use of a running belay.

To rig a running belay, the leader places snow or ice protection and then clips the rope to it. As the second approaches, he can either clip the rope behind him as he passes the protection to safeguard the remaining climbers or—if on a two-person team—remove the protection. If an individual on the team falls, he may pull the others off, but the protection between the climbers will theoretically arrest the fall, limiting the damage of the incident.

In some settings, it might be more efficient and perhaps even safer for the climbers on a team to unrope and “solo” a slope. Imagine a slope that’s not steep enough to require belaying individual pitches, and that, in order to move quickly, you make a team decision not to employ a running belay. On steep or icy slopes where self-arrest is unlikely, the slip of a single climber roped to the rest of the group could result in the loss of the entire team. In such a situation, it might be safer for the individual climbers to unrope.

The decision to unrope should not be made lightly. First, you must consider the reasons that you employed a rope in the first place and determine if those risk factors are still valid. Second, you must feel confident in the ability of each member of your team to solo the slope safely. If you have any doubts about a team member’s skill, you should continue to use the rope and either employ running belays or stop and belay each climber up or down the slope.

Timing the Climb

Many accidents take place because of unstable snow. In a spring or summer context, this often includes the combination of wet slide avalanches, collapsing cornices, and weak snow bridges over crevasses. These dangers may be mitigated by an early morning ascent.

On glaciated peaks and on peaks with a lot of objective hazard, it’s not uncommon for spring and summer climbing teams to leave camp between midnight and 4 a.m. Teams should estimate how long it will take to climb the mountain and descend, and then plan a departure early enough to ensure they are off the snow before the sun dangerously warms the slopes.

During the colder months and in colder regions, parties often elect to climb during the day. The cooler temperatures provide a margin of safety that is similar to that experienced by night climbers in the spring and summer. However, it is not uncommon for temperatures to warm and for parties to have to adapt their schedules to the weather. Those who do not adapt to the conditions put themselves at risk.

Ideally, mountaineers will encounter firm, easily climbed snow during the ascent and softer snow—but not too wet or soft—for a rapid, easy descent. Timing a climb to find such conditions is a key aspect of the craft of mountaineering.

Making Good Choices

Effectively moving on snow involves a matrix of skills and decisions. An individual who has mastered such techniques will not be immune from appearing in these pages under the heading that reads “fall on snow,” but he or she will certainly be much less likely to have an accident.

Most importantly, a casual, “make it up as you move along” approach to snow travel is not safe. You will most successfully deal with each slope angle and each type of snow or ice under foot by applying a specific technique, and the techniques required can change repeatedly over a relatively short distance. When you have learned and practiced the complete repertoire of fundamental skills discussed here, you always will be making “best choices” for each step of your climbs.



ABOUT THE AUTHORS

Dunham Gooding founded the American Alpine Institute in 1975 and has taught courses and guided expeditions in the Cascades, Canada, Ecuador, Bolivia, and Patagonia. He has served as chairman of the National Summit Committee on Mountain Rescue, president of the American Mountain Guides Association (AMGA), and president of the Outdoor Industry Association. Jason D. Martin is the director of operations and a senior guide at the American Alpine Institute. He is on the board of directors of the AMGA and has written two guidebooks and co-authored Rock Climbing: The AMGA Single Pitch Manual.

Special thanks to Bryan Simon, who helped analyze snow-travel accidents reported in the past decade of Accidents editions.

Avalanches

Know the Ropes

Originally Published in Accidents in North American Climbing 2020

Written by Matt Schonwald

avalanche debris

LAST JUNE I was guiding three people for a ski descent of the Coleman-Deming Route on Mt. Baker. Wind the previous day had exceeded 20 mph, loading fresh snow onto the Roman Wall, the 40° headwall before the summit plateau. I first guided this route in 1999 and knew this slope had seen multiple avalanche accidents, including the first recreational avalanche fatalities in Washington, when five people died in July 1939, entombed in the crevasses below the wall.

We skinned up from our 6,000-foot camp, with an icy wind blowing down from the summit. The new snow was soft and ankle deep, but the wind concerned us—would we have a serious avalanche issue with just eight inches of fresh [snow] in June? There was ample precedent: All of Mt. Baker’s climbing avalanche victims have been killed in May, June, or July. Three hours passed and we arrived at the Coleman-Deming Saddle, just above 9,000 feet. I could see several parties descending from the Roman Wall.

I approached a guide I knew to ask why they were heading down. “A party of three took a 300-foot ride,” he said. “They triggered a slab just below the top of the wall. Luckily, no injuries.” Clouds swirled around the wall and no one could see the full extent of the crown. As we turned to descend, someone asked if we could still go up, since the headwall already had slid, and I took a second to respond. Did they not see the snow was unstable? That the climbers who were caught were lucky they had walked away with their lives and no injuries? I realized there was a real lack of understanding among some mountaineers that summer storms can deposit new snow deep enough to avalanche—and that even a small slide can be deadly.

climber  fatalities by month; avalanche fatalities by month

Chart of U.S. avalanche fatalities involving climbers, showing that these fatal accidents peak in May and June, with Washington and Alaska experiencing the most climber fatalities in the United States. Chart by CAIC, annotated by Matt Schonwald

A SERIOUS THREAT

Although a large majority of avalanche fatalities occur in the winter months, avalanches are not uncommon in the long days of late spring and early summer. According to a national database compiled by the Colorado Avalanche Information Center (CAIC), since 1951 in the United States, 39 out of 44 avalanche fatalities in June and 31 out of 43 in May have involved climbers.

Most backcountry skiers and winter mountaineers in avalanche-prone areas have some knowledge of the hazards and carry basic avalanche safety equipment, such as transceivers, probes, and shovels. Many seek formal training in avalanche avoidance and rescue. But preparation for avalanche hazards in the spring and summer mountaineering season is not as widespread or systematic. Most avalanche training is skewed toward winter travelers, and many avalanches that affect mountaineers occur in terrain not covered by avalanche forecasts or after avalanche centers have shut down for the season.

At the same time, the consequences of an avalanche are at least as great for mountaineers in spring and summer as they are during the winter months. As the winter snowpack melts back, additional hazards are exposed. Cliffs, narrow couloirs, exposed crevasses or boulder fields, and other terrain traps make an encounter with even a small avalanche potentially fatal.

Mountains big and small possess the potential to bury or injure you with the right combination of unstable snow, terrain, and a trigger—often someone in your party. It’s not only important to recognize these hazards but also to have the discipline to respect the problem and choose another route or wait till the risk decreases. In preparing to enter avalanche terrain, the mountaineer must be focused more on avoiding avalanches than on surviving one, and that is the focus of this article.

TRAINING AND EQUIPMENT

In North America, the sequence of avalanche education for recreationalists consists of a one-hour awareness class, a three-day Level 1 course for beginners, a one-day rescue course to improve the skills learned in Level 1, and a three-day Level 2 program for amateur trip leaders, such as those leading groups of friends on a hut trip or overnight climbs. Basic avalanche training helps develop understanding of the risks a particular route might present. A Level 2 course teaches trip planners to assess problems in unfamiliar mountains and in the absence of regular avalanche forecasts.

An avalanche rescue course teaches you how to locate and rescue climbers buried in a slide. Mountaineers must be prepared for the possibility of multiple burials, since avalanches in glaciated terrain and on popular routes have a high probability of catching more than one climber. You can find courses through avalanche.org in the United States and avalanche.ca in Canada.

Some mountaineers leave behind their avalanche safety equipment during the spring and summer season, assuming the relatively stable snowpack decreases avalanche hazard. But, as we will see, there are many reasons avalanches may occur during prime mountaineering season, and safety gear—shovel, probe, and avalanche transceiver—should be used if there is any risk of being caught and buried. (A shovel and probe have multiple other uses, including leveling tent platforms and probing for crevasses.) These should be individual gear items—sharing any of this equipment reduces your ability to be located quickly or to dig out your friend.

Again, given the dangers that even very small avalanches present to climbers, recognizing the hazards and planning to avoid them is the number one survival strategy.

slab avalanche

This huge slab avalanche in July [2020] stripped the north face of Mt. Belanger in Jasper National Park, Canada, down to bare glacial ice. Photo by Grant Statham

AVALANCHE TYPES

Mountaineering avalanches typically happen in terrain steeper than 30°, above treeline (often on glaciers), and in areas subject to winter-like storms. In other words: the terrain that climbers love. In the spring and summer seasons, when mountaineering activity peaks, climbers may face exposure to:

Significant storms leaving more than a foot of new snow on your route
Strong winds( >15mph), transporting snow and building slabs on leeward slopes
Strong UV (solar) radiation, increasing the risk of triggering wet loose and slab avalanches

Understanding the basic mountaineering avalanche types helps us recognize the hazards we face and our potential solutions to mitigate or avoid the problems.

Loose Snow Avalanches These slides, also known as sluffs, frequently occur as point releases (describing how they start from a singular point and then fan out and entrain surface snow, gaining mass and speed as they accelerate downhill). They can be dry or wet. “Dry Loose Avalanches” occur during or after cold winter storms with periods of rapid snowfall (greater than one inch an hour). “Wet Loose Avalanches” result from warming of the snow surface above freezing, loosening the bonds of the snow grains and creating instability; these may be triggered by falling rock or ice. Even tiny loose snow avalanches are dangerous to climbers—more so than skiers—because they can knock us off balance in very unforgiving terrain. Any avalanche is a serious threat.

During the spring and summer, the intense UV radiation from the sun makes wet loose avalanches fairly predictable, as the slopes that heat first will be southeast-facing and the hazard then moves around the mountain like a sundial. Avoiding these slides requires planning your outing so you’re not on a snow slope that you need to travel up or down, under, or across when the sun hits, whether during the climb or the descent. Watch out for soft surface snow that moves easily, and try to cross slopes near or at the top to avoid being swept by heavy, wet debris.

late spring slab avalanche; Rocky Mountain National Park

Late spring slab avalanche in Rocky Mountain National Park. Note the track on the left, which was made by a party of skiers one hour before this slide.

Slab Avalanches occur when cohesive snow rests on a weak layer. If that weak layer fails, the cohesive snow fractures and cracks propagate outward, forming distinct areas that may slide. Slabs are formed from storm snow, which can happen any time of year in high alpine terrain. Wind may build deep slabs on leeward slopes, and warm spring and summer weather can add water to them, making them denser and harder to trigger yet more dangerous when they fail. Spring or summer storms that drop more than one foot of snow, followed by a clear, sunny day, are particularly hazardous. The denser snow near the surface destabilizes the slab and makes it prone to triggering, naturally or artificially.

Wind slabs will form when strong (15+ mph) winds move loose snow into dense layers. Strong winds during storms can turn six to eight inches of new snow into one- to two-foot slabs on leeward slopes such as the Roman Wall on Mt. Baker in the Cascades or Tuckerman and Huntington ravines in New Hampshire, to name a few.

For avoiding slab avalanches, it’s critical to recognize red flags in the recent weather history and forecasts, as is placing camps in appropriate areas before or during storms. Climbers should wait 24 to 48 hours before attempting a route that has had more than a foot of new snow, on a leeward aspect, and/or with exposure to terrain traps.

Cornice Falls create risks for climbers moving along snow ridges or failing to notice a cornice when they arrive on a snowy summit. A cornice collapse also can trigger a slab avalanche on the slopes below. The only solution is to avoid climbing under them or approaching too close, especially during the heat of the day when temperatures are near freezing.

Icefall Avalanches result from a portion of a serac or ice cliff failing in a steep, unstable glacier (think: Khumbu Icefall), creating falling ice hazard. As with cornices, falling ice presents the threat of triggering deep slab avalanches that can run far down a mountainside, threatening camps placed too close to large faces. The random nature of icefalls makes predicting these events very difficult, so the only prevention is to minimize travel time through or under icefalls, especially during the daytime, and to avoid placing camps with exposure to collapsing ice. Learn to measure the “alpha angle” below a peak or face to estimate how far debris from a large avalanche may ow (a good resource is wildsnow.com/10011/alpha-angle-avalanche-safety).

Glide Avalanches occur after a long period of warming, when running water has lubricated the slope underneath the seasonal snowpack, causing it to move down-hill. This movement creates glide cracks, which run through the snowpack from the surface to the ground. Large and destructive glide avalanches may be the result. Glacier-polished slabs in the alpine are particularly susceptible to this problem, requiring route selection and trip planning to limit your exposure.

RECOGNIZING TERRAIN HAZARDS

Most of the “50 Classic Climbs” that are not rock climbs—along with countless other North American mountain routes—offer some seasonal avalanche hazard. In addition, the sheer vertical relief of many alpine objectives makes the possibility of a small avalanche a significant hazard. Many routes cross hanging snow fields with exposed or feature-ridden runouts. Very small loose wet avalanches can travel great distances, entraining loose snow and growing dramatically. You can travel on a valley glacier and still risk burial by these events, because faces over 3,000 feet can turn a small sluff into more than 10 feet of debris.

As you plan a climb or move up a route, look for route features that either make avalanches more likely or increase the hazard of a slide. These include:

*Convexity: Areas where the slope angle increases suddenly—these are places where the tension in the slope will be at its highest, making an avalanche more likely to be triggered
*Concavity: Areas where the slope angle decreases suddenly are also a zone of stress, due to an entire slope held up at this rapid transition from steep to flat
*Slopes with rock features poking through the surface, which can make triggering a storm slab more likely
*Seracs or cornices above a slope—these large, unstable features can injure you or trigger large avalanches
*Cliffs below steep ( greater than 30°) slopes, creating exposure to small avalanches pushing climbers over the edge
*Crevasses below a slope, increasing the chance of a deep burial and fatal outcome

Canada has developed a system to rate terrain based on the exposure to avalanches a party will experience while moving through an area. The Avalanche Terrain Exposure Scale (ATES) is used by Parks Canada, Avalanche Canada, the New Zealand national parks, the Pyrenees in Spain, and in guidebooks and maps published by Beacon Books in the United States.

the avalanche terrain exposure scale

On popular mountaineering routes across North America, from Mt. Hood to Mt. Washington, and from spring routes in Colorado and the Tetons to the classics of the Canadian Rockies, steepness, exposure to multiple avalanche paths, and sometimes glaciation put most routes in the “complex” ATES rating. Such routes generally share three characteristics making avalanche accidents more common:

*Ascents in features such as gullies, couloirs, or large faces where there is no safe way to avoid exposure to avalanches
*Approaches through terrain traps with unavoidable exposure to overhead avalanche terrain, such as creeks, cliffs, moraines, moats, and crevasses
*Descents via a different route where conditions ares ubstantially different

Recognizing and acknowledging that your route travels in “complex” terrain should prompt you to focus on identifying the areas of greatest exposure, as well as decision-making points along the route, where you can stop and evaluate the likelihood of avalanche activity.

PLANNING THE CLIMB

Planning a safe climb requires identifying areas of exposure on your chosen route and linking the prevailing conditions and forecast to an increase or decrease in the avalanche possibilities.

I use a process that starts with a weather and avalanche forecast (if available). I look at wind, precipitation, and freezing levels, as well as the recent past events from local weather stations. Then I evaluate which terrain is likely too exposed, given the current conditions, and look for routes or peaks where I can avoid unnecessary exposure. With this information, I draw up time plans for various options to get out and climb safely. Let’s go into some detail on these tools, and then I’ll give an example of the planning process below.

Avalanche Forecasts An avalanche forecast or bulletin gives you information regarding the avalanche hazard rating, avalanche problems, recent events such as observed avalanches on a specific slope, snowpack synopsis, and weather affecting the possibility of triggering an avalanche. The main difference between a forecast and a bulletin is the frequency they are issued—forecasts are daily, and bulletins are issued several times a week (at most). The forecast/bulletin will discuss the avalanche problems and show where they are located (distribution), size (how destructive), and likelihood of triggering (are you feeling lucky, punk?)

Most avalanche forecasts are issued from Thanksgiving through April, but most mountaineering avalanche accidents occur outside this period. The local avalanche center also may issue bulletins or seasonal recommendations giving general advice for the mountaineering season. More recent updates can be obtained from rangers, climbing guides, and the general climbing community in the area. Before a trip, visit local blogs (such as the Denali or Rainier rangers’ blogs), guides’ reports (such as the ACMG guides website mountainconditions.com), or community outlets such as regional forums and Facebook groups to get a general sense of conditions and perhaps even specific reports from your planned objective.

Weather Conditions When seasonal avalanche centers aren’t issuing forecasts, it’s up to climbers to use the nearest mountain weather forecast to help predict avalanche problems. Forecast sites I use include Noaa.gov, Windy.com, Mountain-Forecast.com, Meteoblue.com, and Spotwx.com; it’s worth learning to use several forecasting sites. The accuracy of mountain forecasts drops off dramatically after 24 to 48 hours, so it is a good idea to check the forecast daily at least a week before your trip to see the overall trend: stormy, warm, etc. Key data to look for when checking the forecast includes:

Freezing Level This tells you where snow will start to accumulate and where avalanche problems will develop.
PrecipitationTotals This often will come in inches of water (or millimeters outside the U.S.) for a 6-, 12- or 24-hour period. (A rule of thumb is that one inch of water equals one foot of snow in temperatures near or below freezing.) Precipitation intensity tells you how fast slopes will get loaded; a rate of one inch or 2.5 cm (25 mm) of snow per hour is considered high intensity.
Wind The predominant wind direction tells you which slopes will get loaded—e.g., southwest winds will load northeast (leeward) slopes. Pay attention to sustained wind speeds over 15 mph and duration over two hours, which may enhance the formation of wind slabs.
Remote Weather Station Telemetry You can access online data about the snowpack and recent snowfall from remote SNOTEL sites across North America. (Find links to SNOTEL locations at wcc.nrcs.usda.gov/snow/ or on local avalanche center websites.) You can look at a full season or just a few weeks of weather history.

In the spring and summer, the snowpack typically goes through multiple melt/ freeze cycles, potentially leading to avalanche problems. Early spring (March to mid-April in North America), when the snowpack is just beginning to warm up, is a very dangerous period, as old weak layers can be reactivated, leading to large, destructive avalanche cycles in alpine zones. Key red flags to research and observe include:

  • Persistent weak layers, such as melt/freeze crusts, within the top three feet of the snowpack

  • Early warm-ups when the winter snowpack has not adjusted to the extra heat input from longer days

  • Temperatures above freezing for 24 hours in starting zones. If slopes don’t freeze, the chances of wet avalanches go up dramatically.

  • Large rainstorms (greater than one inch of water in 24 hours)

planning map CalTopo

Planning map created on CalTopo for the Disappointment Cleaver route on Mt. Rainier, showing hazard zones and safer rest stops.

Time plans help you figure out what time you need to leave camp in order to safely travel up and down your route and to avoid hazards that increase in likelihood as the day warms. Web-based planning tools such as Caltopo and Hillmap offer the ability to measure distance and vertical gain on your planned route. With this information, you can estimate how much time it will take to go up and back.

I use a method I learned from the NOLS Wilderness Guide, in which you plan an hour for every 1,000 feet of climbing, plus rest breaks. Other systems include the Naismith Rule and the Munter Formula, which takes into account terrain and travel method. The Guide Pace app will do the calculations for you. Whichever technique you learn, a time estimate will help you determine when to start the day, especially when there are definitive spots on the route you must reach by certain times.

PUTTING IT ALL TOGETHER

A good route to examine is the Disappointment Cleaver on Mt. Rainier, as it possesses an enormous volume of objective hazards as well as a history of avalanche accidents, including the deadliest climbing avalanche in Washington history, when 11 were swept away and killed in June 1981.

Before a planned climb in the third week of June, I watched weather forecasts and noticed that temperatures had been cooler than normal and it had rained in Seattle the first two weeks of the month. Low temps and rain at sea level would mean snow up high. I checked the weather stations and saw that several feet of new snow fell between June 8 and 12, with strong winds at Paradise (5,400 feet) and Camp Muir (10,000 feet). Along with the regular climbing challenges, I added wind slabs and loose wet avalanches to my risk assessment and planned to make snowpack observations a part of my travel plan.

The first day on the Disappointment Cleaver route, from the Paradise parking lot to Camp Muir, gains 4,600 feet over 4.5 miles. I estimated our travel time at 5 hours 15 minutes (4.5 hours of movement plus three 15-minute breaks). Our first break will be below Panorama Point, giving us a chance to evaluate slopes that frequently are loaded after new snowfall and wind.

Day two on the DC route gains 4,400 feet and another four miles or so to the summit. The time plan might seem like it should be close to day one’s plan, but roped glacier travel, crevasse hazards, and the higher altitude will slow us down, so our travel time might be closer to six to seven hours to the summit, then three to four hours back. Timing matters, because right out of camp we will travel under the upper headwall of the Cowlitz Glacier. The aspect is southeast, requiring us to consider our return time if there is enough fresh or soft snow to entrain large debris with wet loose activity. There are three more avalanche paths to cross along the route, exposing us six more times to slides (going up and down). We’ll try to reach the summit by 7 or 8 a.m., so we can be back down by 10:30 or 11 a.m., greatly reducing our chance of being under sun-baked slopes.

My map is marked with the route and rest points, along with known avalanche terrain, so I can plan where to stop and make snowpack and terrain observations. A crucial decision point is Ingraham Flats, where I can assess the Ingraham Glacier and Disappointment Cleaver before entering the last big avalanche exposure and the one with the most history. Many ghosts remain in the crevasses here.

ALTERNATIVE PLANS

An essential step in the planning process is considering alternatives. Make a list of possibilities on the same peak or in the same area to maximize your options as conditions come into focus in the last 24 to 72 hours before your climb. If the conditions don’t look good, it’s time to choose an alternative.

What often causes problems at this point is that big climbs are planned days, weeks, or even months in advance. Climbers may travel thousands of miles to climb a specific peak or route, only to find that conditions aren’t right, despite it being the traditional “ideal” climbing season. A warm winter followed by a cold wet spring can lead to lingering avalanche problems well into June and July. Large summer storms can drop several feet of snow in the high alpine. The mountain weather does not know how much preparation and sacrifice you have put into this trip—being humble means seeing the conditions for what they are and not what you wish them to be.

RED FLAGS ALONG THE ROUTE

Sometimes, even when the forecast and conditions reports are positive, red flags may appear immediately before a climb, during the approach, or at camp the night before:

Recent avalanche activity is Mother Nature’s number one sign of instability. Observe the aspect and elevation of slides (similar to your route?) and other characteristics (how big? what layer slid? what type of avalanche? human or natural trigger?).

Lack of overnight freeze to stabilize the snow

Rapid warming (temperatures fast approaching freezing); watch for rollerballs

Heavy rain on steep (>30°) slopes

Isothermal snow, i.e. crotch-deep wet snow, with no cohesion

Storm snow greater than 12 inches (30 cm) in 24 hours and/or precipitation intensity of greater than one inch per hour. Shooting cracks or whumping (rapid collapse of the snow under foot) are signs of unstable storm snow.

Wind speed over 15mph during a snowstorm, creating wind slabs. These will feel denser than the surrounding snow in the lee of large boulders or cliffs.

RESPECT THE PROCESS

If red flags are observed or develop while you’re on a climb, it’s time to consider an alternative route or a nearby peak with less avalanche exposure. Perhaps your schedule allows time to move to a drier part of the range. On expeditions, red flags may mean waiting or even abandoning your climb while other teams go up. Trusting the process requires not believing that other groups know something you don’t; many times these other parties are driven by various human factors often found in accidents.

Human factors that contribute to poor decision-making include the Dunning-Kruger Effect, in which people overestimate their knowledge and ability in the face of complex problems. We’re also prone to attributing “expert” status on people moving through an area we’re not sure about, in order to avoid the doubts we may feel. We may feel time pressure leading to overconfidence (“we’re here, so let’s just do it”).

Such cognitive biases impact your ability to identify risk and consequences. It’s the reason you may continue up a climb despite staring at multiple red flags. My personal trick to keep bias in check is to treat all climbs as predators that are hunting me. If I can’t be confident that I will avoid becoming their meal, I back away.

The most important avalanche safety tools are your judgment and your willingness to recognize red flags and accept that they are pointing to an avalanche problem. Be humble in the face of natural hazards and you will find that as one door closes another will open, whether it is another route, peak, activity, or epiphany. Being open to change will help you climb for a long time—which is the point, after all!

ABOUT THE AUTHOR: Based in Seattle, Matt Schonwald is founder of BC Adventure Guides. He is a certified ski mountaineering guide, a certified instructor with the American Avalanche Association, and a member of the Northwest Avalanche Center Forecast team.

Know the Ropes: Safer 4th Class

Know the Ropes: Safer 4th Class

Each year we see many accidents that very likely could have been prevented or mitigated by the use of a rope in easy terrain, including unroped falls on technical alpine ridges (often caused by loose rock), approach and de- scent accidents due to rockfall or small slips, and scrambling accidents in terrain deemed “too easy for a rope.” This article seeks to make climbers aware of alternatives to soloing (scrambling) that use the equipment they’re likely carrying anyway and incur little or no time cost.