how to

Cleaning an Anchor in Single Pitch Climbing

Accident data in the United States clearly indicates that the routine task of anchor cleaning is clearly too routine for some of us, and not routine enough for others. The inescapable reality is that experienced and and inexperienced climbers, alike, are susceptible to mishap during this seemingly mundane process.

Every accident on record has a slew of contributing factors, to be sure, and it would be impossible to create best practices that could account for all possible contingencies. However, one common thread indicated by accident reporting and a review of instructional literature is that anchor-cleaning sequences, up to this point, have not necessarily been dictated by any unifying principles or concepts.

This article will attempt to reset the bar on that deficit, and align the reader with a set of value-based decision making tools that inform our recommendations for a generalizable best practice.  This article will start with the following assumption: the climbing team consists of a lead climber that has been lowered to the ground, through a redirected top-anchor, the anchor material needs to be retrieved, and the climbing team is operating in a single pitch context with a permanent fixed anchor. 

This context is common on any single pitch outing. The climber is toproping, when she arrives at the top of the pitch she will retrieve the anchoring tools.  

Often, the climber/cleaner also removes equipment from the climb, equipment that the initial leader left behind.

Certain values should govern the cleaning procedure every time it occurs, and each of these values can be used to analyze the effectiveness of any cleaning sequence.

Those values are as follows:

  • Changing safety systems, like going on and off belay or switching from being belayed to rappelling, opens up opportunities for error. It also takes time, requires communication and double checks. It is inherently more efficient and safer to use one safety system at all times.

  • It is valuable for the cleaner to be connected to the climbing rope, in some way, at all times. That way the rope cannot be dropped.

  • It is valuable to minimize the amount of equipment needed to clean an anchor. If minimal equipment is needed, equipment cannot be forgotten.

Most Generalizable Cleaning Sequence: Lowering off the Rings

The cleaning sequence that best applies the values listed above requires the cleaner to lower off an anchor's rappel rings or quick-links.  There are a few reasons this sequence is not more widely adopted.  First, the lowering sequence is misapplied and/or misunderstood.  Second, there is misplaced sense of stewardship that seeks to preserve anchor hardware. 

Many climbers erroneously believe that changing safety systems in unavoidable because they do not necessarily understand that a bight of rope can be pushed through rappel rings.  They might also misunderstand the different ways climbers can connect to an anchor.  Some connections between a climber and an anchor are critical, and they require strength and security.  Like a PAS, a personal tether, or anchoring with the climbing rope and a clove hitch.  These kinds of connections are both strong and secure. Combined with a locking carabiner, they are capable of holding over ten times the climbers body weight in some cases.

Second, many climbers misunderstand the actual impacts lowering off the rings make on communal fixed hardware. Lowering off rings, undoubtedly, wears rings out faster than rappelling.  But, it is important to remember that the rings are engineered for the purpose of lowering. They are designed to sustain the wear and tear of lowering, and then be replaced. Even if lowering resulted in drastic ring erosion, it is worth considering how a more efficient and safer lowering sequence may be worth it.  As accident data surrounding rappelling accumulates, it is worth considering that our friends and family members are more valuable than stainless steel rings, and the only real cost of keeping them safer is replacing rings more frequently.

Having asserted those two common misunderstandings, let’s look at a cleaning sequence that maintains one unremitting safety system (the belay), requires minimal equipment, and never detaches the climbing rope from the cleaner.

Step One: Fifi. Upon arriving at the anchor, the leader can Fifi in to any point in the anchor, but the master point is usually well positioned for this task. A Fifi is a common tool among aid climbers and the concept can be valuable in a cleaning sequence. The idea is to continue to rely on the belay for ultimate security.  Why relinquish it? But, the cleaner will want to connect to the anchor somehow so that the cleaning sequence can proceed more efficiently. So, taking a single quickdraw, any of the quickdraws cleaned off the climb for example, and connecting the belay loop to the master point, will allow the cleaner to work without maintaining a stance or a grip on the rock.  

cleaning a single pitch sport anchor

Any quickdraw cleaned off the pitch can serve as a "Fifi".

Connecting to the masterpoint with a "fifi" is not anchoring. It's just a place to sit for a minute. No need to say anything to suggest that the belayer should not continue to keep the climber safe.

Connecting to the masterpoint with a "fifi" is not anchoring. It's just a place to sit for a minute. No need to say anything to suggest that the belayer should not continue to keep the climber safe.

Step Two: Thread a Bight through the rap ring(s). The cleaner will then call for slack, enough slack to run a bight of rope through the rap ring(s).  Once the bight has been passed through the ring, a Figure 8 on a Bight should be tied.  

Most rap rings and quicklinks are big enough to pass a bight of rope through. The bight only needs to be big enough to tie a Figure-8-On-A-Bight. Note the hangers are thick rounded steel typically found at belay stations; do not pass rope through th…

Most rap rings and quicklinks are big enough to pass a bight of rope through. The bight only needs to be big enough to tie a Figure-8-On-A-Bight. Note the hangers are thick rounded steel typically found at belay stations; do not pass rope through the thinner, sharper edged hangers used on route.

Try to imagine the precision in this moment. The bight is now blocked against the rings. If anything were to go wrong, the climber is secured in a way, by that blocked knot. The belayer did not hear anything confusing or distracting like “Off Belay” or “In Direct” or any other command that could suggest that relinquishing the belay is the next step.

Step Three: Clip the Figure on a Bight to the belay loop with a locking carabiner or two non-locking carabiners (opposite and opposed). Once that bight knot is connected to the climber’s belay loop, the climber may call to the belayer for tension, or take. The belay will do so, and the climber’s body weight will now be counterweighted through the rings by the belayer.

cleaning a sport anchor; bight on a locker

In this moment, the climber is connected to the original tie-in, the bight-knot and locking carabiner, and the fifi. It's a good time to double check the system.

Try to imagine the precision of this moment. Even if the belayer somehow misunderstood his/her role in the cleaning sequence, the call to take gives the climber a chance to double check the entire system before initiating any other critical steps. The climber is essentially anchored at this point by the knot block, the bight clipped to the belay loop, and the original tie-in, which still has not been touched.

Step Four: Untie the original tie-in, clean the anchor, and lower. After double checking all the critical links in the system (the belayer, the bight knot, the locking carabiners, and the rope running through the rap rings) the climber can untie his/her original figure 8 follow through. That long tail can be pulled through the rings and allowed to dangle harmlessly behind the cleaner. The anchoring tools can all be removed from the bolts and stowed. The climber can announce that he/she is ready to lower, and allow the belayer to lower to the ground.

lowering from rap rings is safer than rappelling

When lowering, the tail from the original tie-in will dangle behind the bight knot.

The cleaner never relinquished the belay.  The cleaner was never untied from the rope, and therefore did not create an opportunity to drop it.  The cleaner only communicated three unambiguous commands to the belayer: “Slack,” “Take, ” and “Ready to Lower.” The cleaner did not need PAS or daisy chain or ATC or friction hitch or a half dozen carabiners to complete this sequence.  

Most anchor cleaning should happen in this way; it is the generalizable case.

Know the Ropes: Cleaning an Anchor


The Masterpoint, The Shelf, The Components: Anchor Anatomy in Action

The Masterpoint

The masterpoint of an anchor is aptly named. It is designed to be the working focal point for anchoring, belaying, and a number of auxiliary tasks that might happen while rock climbing. Much like the Master Bedroom of a house, the masterpoint is where the residents of the anchor want to be. The Masterpoint offers the most capacious, the most secure, and the most versatile operational/organizational platform available.

Recognizing and utilizing a masterpoint is often so routine for practiced climbers, it is hard to imagine connecting to an anchor in any other way. However, alternative connection options (like the anchor shelf or components) often bewilder and confuse newer climbers.  Without clear direction one way or the other, it is easy to imagine an uninformed anchor resident choosing to reside in the broom closet rather than the master bedroom.

In these sections and illustrations, we will explore why the master point is the MASTER point, variations on what a masterpoint can look like, and why and how the anchor shelf and components can be valuable connections too. Lastly, we'll examine some special cases anchors which may lack a shelf, or in some cases the actual location of the shelf might be confusing.

What is the Masterpoint?

The masterpoint is the connection point of an anchor where all the values of the anchor are optimized and consolidated. We know that the core principles in all anchor constructions have been consistently applied in climbing applications.  Those values are: Strength, Redundancy, Load Distribution, Simplicity, and Limited Extension. So, the masterpoint is the connection point where all those values are optimized and consolidated, where they all come together. Let’s look at some examples:

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

The Ponytail Anchor is common.  Using a 4’ Nylon sling it creates all the values climbers have come to expect from an anchor.  It is redundant, it distributes load evenly to the components, it is strong, and it is easy to build and take apart.

The Masterpoint is where all those values come together.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

Similarly, a simple ponytail anchor with a cordellette provides a masterpoint with the effective strength of four strands of 7mm nylon cord.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

The three piece anchor that is so common in trad climbing also provides a working masterpoint.  Here, a 7mm nylon cord effectively produces a 21mm masterpoint and combines all the values needed for an effective anchor: strength, redundancy, load distribution, and simplicity.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

An 11mm static rope can be used to combine components in the terrain that may be far apart from each other. 

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

Once tied off, the anchor builder has to select a knot that combines the strength of the components, and retains all the values of an effective anchor.  Here, a BHK is an ideal choice.  It creates a redundant masterpoint.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

The quad is a self-adjusting anchor system, and it is commonly applied to anchors where the direction of load changes direction.

The effective masterpoint uses three of the four strands in the nadir of anchors arc.  The fourth strand captures any carabiners or connections if one of the components were to fail.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

Similar to the quad, a 4’ nylon sling is also commonly used to create a self-adjusting anchor.

Here the masterpoint is inside the Magic X connection point, combining the effective strength of two isolated strands of the nylon sling.  The masterpoint is both strong and redundant, but the two overhand knots can be difficult to untie after heavy loads are applied to the anchor.

What is the Shelf?

The shelf is an auxiliary attachment point that has almost the same values as the Masterpoint.  Imagine it as a finished attic, relative to a Master Bedroom.  A finished attic has many of the amenities of the Master Bedroom, but it would be weird to move in to the attic and leave the Master Bedroom empty.  It would also be weird to sleep in the Master Bedroom, but dress in the attic.  In other words, the shelf is a good place to put something that might not otherwise be functional in the masterpoint.  For argument’s sake, the shelf should also present an attachment point that has redundancy, strength, and distributes load to the components.  As a result, some anchors don’t even have a shelf.  Let’s looks at some examples:

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

The shelf of the anchor has the same essential properties as the masterpoint.

For the ponytail anchor with 4’ nylon sling, the shelf clips both legs of anchor above the Masterpoint

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

For the cordellette ponytail anchor, there are four strands of 7mm nylon in the masterpoint.  To create that same kind of connection point, the shelf must clip both legs of the anchor above the masterpoint. 

That means that two stands of each leg effectively creates the anchor’s shelf.

96
 

 
Normal
0




false
false
false

EN-US
X-NONE
X-NONE

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 


 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false"
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount…

With three of four piece anchors, the shelf clips into each leg, loading three strands, just like the masterpoint.

What are the components on an anchor?

The components are the things that connect the anchor to the rock, snow, or ice.  Components can be something as simple as a tree or large vegetation. It could be a piece of removable protection, like a cam or a nut. Or, it could be a fixed anchor, like a bolt. Usually an anchor combines the strength of its components to create a masterpoint, and therefore no single component every really duplicates the values that are found at the masterpoint. A component is like a cabinet or closet, relative to the master bedroom. It would be weird to do anything more than storage in a space like that. In some cases, especially in climbing, it might be dangerous to do anything important on a single component. 

Let’s watch the masterpoint, the shelf, and the components at work. Look at how the master bedroom, the attic, and the closet are used to categorize the importance of the space according to things the climbing team places there.

The belayer is anchored to the masterpoint because the masterpoint is the master bedroom.

The belayer is anchored to the masterpoint because the masterpoint is the master bedroom.

There is no need to use the shelf because the masterpoint can hold both anchored belayer and accommodate the belay device.&nbsp; But, when the belayer starts storing things that are less vital, the shelf starts to present itself as a valuable auxili…

There is no need to use the shelf because the masterpoint can hold both anchored belayer and accommodate the belay device.  But, when the belayer starts storing things that are less vital, the shelf starts to present itself as a valuable auxiliary attachment point.

If the climbing teams needs an auxiliary attachment point that has the same values as the masterpoint, the shelf is always available. &nbsp;The backpack, for example, is not a primary resident of the anchor, but it might be heavy and have vital equi…


If the climbing teams needs an auxiliary attachment point that has the same values as the masterpoint, the shelf is always available.  The backpack, for example, is not a primary resident of the anchor, but it might be heavy and have vital equipment inside.

Finally, if there is an object that just needs to be stored somewhere for a moment, something non-vital where the load-bearing properties and the security of the attachment are irrelevant, a single component acts like cabinet or a closet.&nbsp; It s…

Finally, if there is an object that just needs to be stored somewhere for a moment, something non-vital where the load-bearing properties and the security of the attachment are irrelevant, a single component acts like cabinet or a closet.  It stores something small, temporarily.


Tricks, Traps, and Conundrums with Masterpoints and Shelves

Many anchors don’t have a shelf and it takes a clear headed understanding about what a masterpoint and shelf are, and what they are for, to sort out which anchors have a shelf and which do not. Let’s have a look at a few examples.

Many Toprope anchors that are built with a static rope effectively do not have a shelf.

Many Toprope anchors that are built with a static rope effectively do not have a shelf.

Looking closer, it is clear that clipping above the BHK on this anchor does not have the same material redundancy as the BHK itself.

Looking closer, it is clear that clipping above the BHK on this anchor does not have the same material redundancy as the BHK itself.

Similarly, when the cordellette is untied and the anchor is configured by working the cordellette from end to end, the shelf cannot have the same qualities as the masterpoint.

Similarly, when the cordellette is untied and the anchor is configured by working the cordellette from end to end, the shelf cannot have the same qualities as the masterpoint.

This anchor effectively has no shelf.

This anchor effectively has no shelf.

A monolithic anchor easily deceives the eye when a climber tries to clip the shelf in the same manner as they may be accustomed to while using three piece anchors.

A monolithic anchor easily deceives the eye when a climber tries to clip the shelf in the same manner as they may be accustomed to while using three piece anchors.

The climber accustomed to simply grabbing two strands may not be clipping the shelf. &nbsp;It might be a false shelf.

The climber accustomed to simply grabbing two strands may not be clipping the shelf.  It might be a false shelf.

In profile, it becomes clear that the false shelf is only connecting to one of the two strands.

In profile, it becomes clear that the false shelf is only connecting to one of the two strands.

The actual shelf on a monolithic anchor looks like this.

The actual shelf on a monolithic anchor looks like this.

Self Adjusting anchors like the Magic X with Load Limiting Knots or the Quad, don’t really have a shelf.&nbsp; The Magic X only offers one point that boasts material redundancy and loads the components equally through a range of motion.

Self Adjusting anchors like the Magic X with Load Limiting Knots or the Quad, don’t really have a shelf.  The Magic X only offers one point that boasts material redundancy and loads the components equally through a range of motion.

The Quad, by comparison, offers four strands of material that hang between the load-limiting knots.&nbsp; Which means that there are few options to designate a masterpoint. Using three strands as the effective masterpoint offers optimal strength (lo…

The Quad, by comparison, offers four strands of material that hang between the load-limiting knots.  Which means that there are few options to designate a masterpoint. Using three strands as the effective masterpoint offers optimal strength (loading three strand of cordellette at all times) and the remaining strand creates redundancy behind the load limiting knots.  But, clipping three strands effectively negates the opportunity to use an anchor shelf.  There is no other point on the anchor that has the same self-adjustment and load-bearing strength as those three strands of cordellette.

Instead, clipping two stands of the Quad offers two connection points that have identical strength, self-adjustment, and redundancy properties.

Instead, clipping two stands of the Quad offers two connection points that have identical strength, self-adjustment, and redundancy properties.

A sport climbing anchor, commonly just a pairing of quickdraws, also has a masterpoint that is difficult to identify.

A sport climbing anchor, commonly just a pairing of quickdraws, also has a masterpoint that is difficult to identify.

Clipping into both carabiners right alongside the rope is effectively the masterpoint of a sport anchor. &nbsp;Luckily, sport climbing rarely necessitates the use of a masterpoint.

Clipping into both carabiners right alongside the rope is effectively the masterpoint of a sport anchor.  Luckily, sport climbing rarely necessitates the use of a masterpoint.